CCNA Study Guide

This Blog highlights CCNA study materials for those pursuing the CCNA EXAM 640-801.It is a must read for those going for the exam and need last minute total recall.

Click Here for CCNA exams qns!

Thursday, March 16, 2006


NAT is like the receptionist in a large office. Let's say you have left instructions with the receptionist not to forward any calls to you unless you request it. Later on, you call a potential client and leave a message for that client to call you back. You tell the receptionist that you are expecting a call from this client and to put her through.

The client calls the main number to your office, which is the only number the client knows. When the client tells the receptionist that she is looking for you, the receptionist checks a lookup table that matches your name with your extension. The receptionist knows that you requested this call, and therefore forwards the caller to your extension.

Developed by Cisco, Network Address Translation is used by a device (firewall, router or computer) that sits between an internal network and the rest of the world. NAT has many forms and can work in several ways:

Static NAT - Mapping an unregistered IP address to a registered IP address on a one-to-one basis. Particularly useful when a device needs to be accessible from outside the network.
In static NAT, the computer with the IP address of will always translate to

Dynamic NAT - Maps an unregistered IP address to a registered IP address from a group of registered IP addresses.
In dynamic NAT, the computer with the IP address will translate to the first available address in the range from to
Overloading - A form of dynamic NAT that maps multiple unregistered IP addresses to a single registered IP address by using different ports. This is known also as PAT (Port Address Translation), single address NAT or port-level multiplexed NAT.
In overloading, each computer on the private network is translated to the same IP address (, but with a different port number assignment.

Overlapping - When the IP addresses used on your internal network are registered IP addresses in use on another network, the router must maintain a lookup table of these addresses so that it can intercept them and replace them with registered unique IP addresses. It is important to note that the NAT router must translate the "internal" addresses to registered unique addresses as well as translate the "external" registered addresses to addresses that are unique to the private network. This can be done either through static NAT or by using DNS and implementing dynamic NAT.
The internal IP range (237.16.32.xx) is also a registered range used by another network. Therefore, the router is translating the addresses to avoid a potential conflict with another network. It will also translate the registered global IP addresses back to the unregistered local IP addresses when information is sent to the internal network.
The internal network is usually a LAN (Local Area Network), commonly referred to as the stub domain. A stub domain is a LAN that uses IP addresses internally. Most of the network traffic in a stub domain is local, so it doesn't travel outside the internal network. A stub domain can include both registered and unregistered IP addresses. Of course, any computers that use unregistered IP addresses must use Network Address Translation to communicate with the rest of the world.
NAT can be configured in various ways. In the example below, the NAT router is configured to translate unregistered (inside, local) IP addresses, that reside on the private (inside) network, to registered IP addresses. This happens whenever a device on the inside with an unregistered address needs to communicate with the public (outside) network.

An ISP assigns a range of IP addresses to your company. The assigned block of addresses are registered, unique IP addresses and are called inside global addresses. Unregistered, private IP addresses are split into two groups. One is a small group (outside local addresses) that will be used by the NAT routers. The other, much larger group, known as inside local addresses, will be used on the stub domain. The outside local addresses are used to translate the unique IP addresses, known as outside global addresses, of devices on the public network.
IP addresses have different designations based on whether they are on the private network (stub domain) or on the public network (Internet), and whether the traffic is incoming or outgoing.
Most computers on the stub domain communicate with each other using the inside local addresses.
Some computers on the stub domain communicate a lot outside the network. These computers have inside global addresses, which means that they do not require translation.
When a computer on the stub domain that has an inside local address wants to communicate outside the network, the packet goes to one of the NAT routers.
The NAT router checks the routing table to see if it has an entry for the destination address. If it does, the NAT router then translates the packet and creates an entry for it in the address translation table. If the destination address is not in the routing table, the packet is dropped.
Using an inside global address, the router sends the packet on to it's destination.
A computer on the public network sends a packet to the private network. The source address on the packet is an outside global address. The destination address is an inside global address.
The NAT router looks at the address translation table and determines that the destination address is in there, mapped to a computer on the stub domain.
The NAT router translates the inside global address of the packet to the inside local address, and sends it to the destination computer.
NAT overloading utilizes a feature of the TCP/IP protocol stack, multiplexing, that allows a computer to maintain several concurrent connections with a remote computer (or computers) using different TCP or UDP ports. An IP packet has a header that contains the following information:
Source Address - The IP address of the originating computer, such as
Source Port - The TCP or UDP port number assigned by the originating computer for this packet, such as Port 1080
Destination Address - The IP address of the receiving computer, such as
Destination Port - The TCP or UDP port number that the originating computer is asking the receiving computer to open, such as Port 3021
The addresses specify the two machines at each end, while the port numbers ensure that the connection between the two computers has a unique identifier. The combination of these four numbers defines a single TCP/IP connection. Each port number uses 16 bits, which means that there are a possible 65,536 (216) values. Realistically, since different manufacturers map the ports in slightly different ways, you can expect to have about 4,000 ports available.


Post a Comment

<< Home